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Riemann solvers with evolved initial conditions

E. F. Toro∗;†
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SUMMARY

The scope of this paper is three fold. We �rst formulate upwind and symmetric schemes for hyperbolic
equations with non-conservative terms. Then we propose upwind numerical schemes for conservative and
non-conservative systems, based on a Riemann solver, the initial conditions of which are evolved non-
linearly in time, prior to a simple linearization that leads to closed-form solutions. The Riemann solver
is easily applied to complicated hyperbolic systems. Finally, as an example, we formulate conservative
schemes for the three-dimensional Euler equations for general compressible materials and give numerical
results for a variety of test problems for ideal gases in one and two space dimensions. Copyright ?
2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We are concerned with numerical methods for solving non-linear systems of hyperbolic equa-
tions. In particular, we are interested in designing numerical schemes for problems that involve
non-conservative di�erential terms. In this paper we �rst formulate upwind and symmetric
schemes by extending the �nite volume approach. For the upwind schemes one requires in-
tercell �uxes and intercell vector functions, the latter being associated with non-conservative
di�erential terms. To compute these intercell quantities we then propose a Riemann solver
for non-conservative systems. The Riemann solver consists of �rst evolving the initial con-
ditions in time using the full non-linear system and then performing a simple linearization
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434 E. F. TORO

of the Riemann problem, for which a straightforward solution can be obtained. The scheme
may be interpreted in the framework of the MUSTA predictor–corrector approach [1–3] with
the linearized Riemann solver as the corrector. The resulting �rst-order Godunov schemes are
extended to second-order of accuracy in space and time under a TVD constraint to control
spurious oscillations near large gradients. The second-order schemes are then extended to
non-Cartesian two-dimensional geometries. The new Riemann solver is applied to the three-
dimensional Euler equations with a general equation of state. The explicit solution is given.
The associated numerical methods are partially validated by means of �ve test problems for
which there are exact solutions, reference solutions or experimental data. Preliminary numerical
results show that the proposed schemes are accurate, robust and e�cient.
The rest of this paper is structured as follows. In Section 2 we formulate numerical schemes

for hyperbolic equations that contain non-conservative di�erential terms. In Section 3 we
present a new Riemann solver. In Section 4 we apply the Riemann solver to the three-
dimensional Euler equations with general equations of state and present the explicit solution
of the Riemann problem; numerical results for �ve test problems are presented. The main
points of the paper are summarized in Section 5.

2. NUMERICAL SCHEMES

There are applications in which the governing equations cannot be written strictly in
conservation-law form, or divergence form. Examples include models for compressible multi-
phase �ows. It is therefore of interest to study numerical methods for hyperbolic equations
expressed in quasi-conservative form, namely

@tQ+ @xF(Q) + @yG(Q) + @zH(Q) +A@x �F(Q) + B@y �G(Q) +C@z �H(Q)=S(Q) (1)

Here Q is the vector of unknowns, which for most problems of physical interest are the
set of physically conserved variables. F(Q), G(Q) and H(Q) may be interpreted as physical
�uxes in the x, y and z directions, respectively. The non-conservative terms involve coe�cient
matrices A(Q), B(Q), C(Q) and partial derivatives of the vector functions �F(Q), �G(Q) and
�H(Q). S(Q) is a vector of source or forcing terms and does not involve derivatives of the
unknowns.
In this section we formulate numerical schemes for solving equations of form (1).

2.1. Conservative systems

We �rst consider the simpler case of an m×m system of hyperbolic conservation laws

@tQ+ @xF(Q)=S(Q) (2)

for which the �nite volume approach applied on a control volume [xi−1=2; xi+1=2] × [tn; tn+1]
yields

Qn+1
i =Qn

i − �t
�x
[Fi+1=2 − Fi−1=2] + �tSi (3)
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where

Qn
i =

1
�x

∫ xi+1=2

xi−1=2

Q(x; t) dx

Fi+1=2 =
1
�t

∫ tn+1

tn
F(Q(xi+1=2; t)) dt

Si =
1
�t

1
�x

∫ tn+1

tn

∫ xi+1=2

xi−1=2

S(x; t;Q(x; t)) dx dt

(4)

with �x= xi+1=2 − xi−1=2 and �t= tn+1 − tn. These �nite volume relations are exact. A �nite
volume numerical method results once approximations to Fi+1=2 and Si are provided, giving
rise to numerical �uxes and numerical sources, respectively, denoted again by Fi+1=2 and Si.
Thus we interpret (3) as a �nite volume numerical method to solve (2).
The following discussion concerns the de�nition of intercell numerical �uxes, for which

there are two main approaches. Godunov’s upwind approach [4] de�nes the intercell numerical
�ux Fi+1=2 in terms of the similarity solution Qi+1=2(x=t) of the Riemann problem

@tQ+ @xF(Q) = 0

Q(x; 0) =

{
Qn
i if x¡0

Qn
i+1 if x¿0

(5)

The solution in the half-plane t¿0, −∞¡x¡+∞ forms the so-called Riemann fan which
consists of m+1 constant states separated by m wave families, each one associated with a real
eigenvalue �(k). The Godunov intercell numerical �ux is found by �rst evaluating Qi+1=2(x=t)
at x=t=0, that is along the (local) t-axis, and then evaluating the physical �ux vector F(Q)
in (2) at Qi+1=2(0), namely

FGodi+1=2 =F(Qi+1=2(0)) (6)

The exact solution will generally involve at least one iterative procedure and thus in practice,
whenever possible, one uses approximate Riemann solvers. For a review on Riemann solvers
see, for example, Reference [5].
Non-upwind (or centred, or symmetric) schemes, on the other hand, do not explicitly utilize

wave propagation information and are thus simpler and more generally applicable. Examples
are the Lax–Friedrichs �ux, the two-step Lax–Wendro� �ux [6] and the FORCE �ux [7, 8].
One can introduce a minimum of wave propagation information into the framework of existing
symmetric schemes. A well-known example is the Rusanov �ux [9], sometimes also known
as the local Lax–Friedrichs �ux. Consider local mesh dimensions �t, �x and a local maximum
wave speed

Si+1=2 = Si+1=2(Qn
i ;Q

n
i+1)

that depends only on the data states left and right of the interface. For example, for the Euler
equations one can set

Si+1=2 =max(|uni |+ ani ; |uni+1|+ ani+1) (7)
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where uni and a
n
i are, respectively, particle velocity and sound speed in cell i at time level n.

Similarly, uni+ and a
n
i+1 are particle velocity and sound speed in cell i + 1 at time level n.

The local mesh and local wave speed are related thus:

�x
�t
=
Si+1=2
Ĉ loc

where Cloc is a prescribed CFL number for local use. Then, locally the classical Lax–Friedrichs
�ux can be written as

FLFi+1=2 =
1
2

[
F(Qn

i ) + F(Q
n
i+1)− Si+1=2

Cloc
(Qn

i+1 −Qn
i )

]
(8)

Analogously, locally the Classical Lax–Wendro� �ux becomes

FLWi+1=2 =F(Q
LW
i+1=2); QLW

i+1=2 =
1
2
[Qn

i +Q
n
i+1]−

1
2
Cloc
Si+1=2

[F(Qn
i+1)− F(Qn

i )] (9)

The GFORCE numerical �ux [10] is the weighted average

FGFi+1=2 =�F
LW
i+1=2 + (1−�)FLFi+1=2 (10)

where

�(C)=
1

1 + Cloc
(11)

An analysis of (10) in terms of the model equation

@tq+ �@xq=0 (12)

shows that for Cloc = 1 and Cloc =Cc�61, where Cc� is the chosen CFL coe�cient for the
numerical scheme (3), the GFORCE �ux reduces to the Godunov’s upwind �ux, which gives
the monotone scheme with the smallest local truncation error. Moreover, for 0¡Cloc¡Cc� the
scheme is monotone but more di�usive than the Godunov’s method and for Cc�¡Cloc¡1 the
scheme is non-monotone. We use GFORCE with Cloc =Cc� or Cloc = 1.

2.2. Quasi-conservative systems

We consider hyperbolic equations of the form

@tQ+ @xF(Q) +A(Q)@x �F(Q)=S(Q) (13)

As done for the derivation of the conservative scheme (3), integration of equations (13)
over a control volume produces the following numerical scheme for the non-conservative
system (13):

Qn+1
i =Qn

i − �t
�x
[Fi+1=2 − Fi−1=2]− �t

�x
Ai[ �Fi+1=2 − �Fi−1=2] + �tSi (14)

where Qn
i , Fi+1=2, �Fi+1=2 and Si are approximations to the corresponding integral averages (4)

and the coe�cient matrix Ai is an approximation to a space-time integral of the matrix in the
considered control volume, analogous to the numerical source Si in (4).
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Remark
There are various ways of obtaining an approximation leading to the coe�cient matrix Ai
in (14). In Reference [11] we explored approximations for the particular case in which the
system was written in fully non-conservative form, that is when F (Q) = 0 in (13). The
assessment of these approximations for the quasi-conservative case (13) is still a pending
task. For discontinuous solutions, the choice may have an e�ect on the waves speeds.

Upwind-based approximations require the solution of the Riemann problem for the quasi-
conservative system (13) to �nd the appropriate intercell approximations in scheme (14). This
is the subject of Section 3.
A symmetric scheme to solve (13) is the following predictor–corrector scheme, in which

the predictor step is:

Qn+1=2
i−1=2 =

1
2
(Qn

i−1 +Q
n
i )− 1

2
�t
�x
[F(Qn

i )− F(Qn
i−1)]

−1
2
�t
�x
Ani−1=2[ �F(Q

n
i )− �F(Qn

i−1)] +
1
2
�tSi−1=2

(15)

and

Qn+1=2
i+1=2 =

1
2
(Qn

i +Q
n
i+1)− 1

2
�t
�x
[F(Qn

i+1)− F(Qn
i )]

−1
2
�t
�x
Ani+1=2[ �F(Q

n
i+1)− �F(Qn

i )] +
1
2
�tSi+1=2

(16)

The corrector step gives the solution in cell i at the new time level n+ 1 as

Qn+1
i =

1
2
(Qn+1=2

i−1=2 +Q
n+1=2
i+1=2 )− 1

2
�t
�x
[F(Qn+1=2

i+1=2 )− F(Qn+1=2
i−1=2)]

−1
2
�t
�x
An+1=2i [ �F(Qn+1=2

i+1=2 )− �F(Qn+1=2
i−1=2)] +

1
2
�tSn+1=2i

(17)

The coe�cient matrices are taken as

Ani−1=2 =A(
1
2 (Q

n
i−1 +Q

n
i ))

Ani+1=2 =A(
1
2 (Q

n
i +Q

n
i+1))

An+1=2i =A( 12 (Q
n+1=2
i−1=2 +Q

n+1=2
i+1=2 ))

(18)

while the numerical sources are

Sni−1=2 = S(
1
2 (Q

n
i−1 +Q

n
i ))

Sni+1=2 = S(
1
2 (Q

n
i +Q

n
i+1))

Sn+1=2i = S( 12 (Q
n+1=2
i−1=2 +Q

n+1=2
i+1=2 ))

(19)

Scheme (15)–(17) does not require upwind information or knowledge of the eigenstructure
of the system. In the next section we deal with upwind-based schemes of type (14).

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:433–453



438 E. F. TORO

τ

d

Godunov state

QR

QL QR

QL

FLR

Figure 1. Illustration of the EVILIN scheme. First, the given states either side of the interface are
evolved using the full non-linear equations. Then, the evolved states form the initial conditions for a

simple linearized Riemann problem, whose solution is used to evaluate a Godunov �ux.

3. THE EVILIN FLUX

Our aim is to provide a numerical �ux by solving, approximately, the Riemann problem with
evolved initial conditions

@tQ+ @xF(Q) +A(Q)@x �F(Q) = 0

Q(x; 0) =

⎧⎨
⎩
Q̂L if x¡0

Q̂R if x¿0

(20)

to obtain a similarity solution Q̂LR(x=t) to be used in the computation of intercell numerical
�uxes and intercell numerical functions in (14). It is important to realize that the initial
conditions Q̂L; Q̂R in (20) are assumed to have undergone a non-linear evolution step, as in
the MUSTA approach [1–3].
Given that we EVolve the Initial conditions and then LINearize the Riemann problem, we

call the scheme the EVILIN Riemann solver. The computation of the EVILIN �ux has two
main steps. These are illustrated in Figure 1.

3.1. Data evolution

A crucial step of the method is the time evolution of the initial conditions for (20), which has
the e�ect of transforming large data QL;QR to small data Q̂L; Q̂R. For a strictly conservative
system, A(Q)= 0 in (20), the initial data are evolved as follows:

Q̂L =QL − �t
�x
[FLR − F(QL)]; Q̂R =QR − �t

�x
[F(QR)− FLR] (21)
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Here FLR =FLR(QL;QR) is a numerical �ux, �x is a given local mesh size and �t is a local
time step determined from the data states QL;QR, the length �x and the local CFL coe�cient
Cloc. See (11) and de�nitions proceeding it. To compute FLR we use the numerical �ux
function FGFi+1=2 given by (10), (11).
For a quasi-conservative system, as in (20), we apply the procedure (15)–(17). The initial

conditions of (20) are evolved as follows:

Q̂L =
1
2
(QL +Q

1=2
LR)− 1

2
�t
�x
[F(Q1=2

LR)− F(QL)]− 1
2
�t
�x
A1=2L [ �F(Q

1=2
LR)− �F(QL)]

Q̂R =
1
2
(Q1=2

LR +QR)− 1
2
�t
�x
[F(QR)− F(Q1=2

LR)]−
1
2
�t
�x
A1=2R [ �F(QR)− �F(Q1=2

LR)]

(22)

where

Q1=2
LR =

1
2
(QL +QR)− 1

2
�t
�x
[F(QR)− F(QL)]− 1

2
�t
�x
ALR[ �F(QR)− �F(QL)]

ALR =A( 12 (QL +QR))

A1=2L =A( 12 (QL +Q
1=2
LR))

A1=2R =A( 12 (Q
1=2
LR +QR))

(23)

3.2. The Riemann problem for evolved data

We �rst select a suitable set of variables W=MQ that renders the equations and their
eigenstructure analysis as simple as possible. M is a suitable transformation matrix. The
trivial choice M= I leaves the system is terms of the original, possibly conserved, variables.
In terms of new variables W the governing equations in (20) may be written in quasi-linear
(non-conservative) form as

@tW+ B(W)@xW= 0 (24)

We assume that the system is hyperbolic, with real (possibly non-distinct) eigenvalues

�1(W)6�2(W)6 · · ·6�m(W) (25)

and a corresponding complete set of linearly independent right eigenvectors

R(1)(W);R(2)(W); : : : ;R(m)(W) (26)

We assume also that the eigenvalues and right eigenvectors are known analytically or
numerically.
We perform a local linearization of system (24) based on the arithmetic mean matrix

B̂LR =B( 12 (ŴL + ŴR)) (27)
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with ŴL =MQ̂L and ŴR =MQ̂R. Then we solve exactly the linearized Riemann problem

@tW+ B̂LR@xW= 0

W(x; 0) =

⎧⎨
⎩
ŴL if x¡0

ŴR if x¿0

(28)

We denote the eigenvalues and eigenvectors of B̂LR by

�̂i= �i( 12 (ŴL + ŴR)); R̂(i) =R(i)( 12 (ŴL + ŴR)); for i=1; 2; : : : ; m (29)

The similarity solution ŴLR(x=t) of (28) is obtained from standard theory of hyperbolic
systems with constant coe�cients. See Reference [5, Section 2.3.3, Chapter 2]. By projecting
the jump �Ŵ≡ ŴR − ŴL in the initial condition onto the eigenvectors one �nds the wave
strengths �̂i, i=1; 2; : : : ; m, by solving the linear algebraic system

�̂1R̂(1) + �̂2R̂(2) + · · ·+ �̂mR̂(m) =�Ŵ (30)

For some problems of practical interest, the closed-form solution of this linear algebraic
system can be easily obtained by hand. For more complicated systems we recommend the
use of algebraic manipulators. One may also �nd the solution numerically using any standard
software for linear algebraic systems.
Having found the wave strengths �̂i, one knows the solution everywhere in the half-plane

t¿0, −∞¡x¡∞. We are interested in the solution at the particular point x=t=0 to determine
the intercell �uxes Fi+1=2 and intercell functions �Fi+1=2 in (14). We have

ŴLR(0)= ŴL +
∑
�̂i¡0

�̂iR̂(i) (31)

or

ŴLR(0)= ŴR − ∑
�̂i¿0

�̂iR̂(i) (32)

or

ŴLR(0)=
1
2
(ŴL + ŴR)− 1

2

m∑
i= 1

sign(�̂i)�̂iR̂(i) (33)

The sought intercell �uxes and intercell functions for use in (14) are

Fi+1=2 =F(ŴLR(0)); �Fi+1=2 = �F(ŴLR(0)) (34)

3.3. Summary of the scheme

The complete scheme is summarized into the following four steps

• Evolution: For each interface, evolve the initial conditions left and right according to
(21) or (22). Note that this data evolution step has no relation with certain evolution
procedures to obtain second order of accuracy, as in the MUSCL-Hancock method, for
instance.
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• Choice of variables for linearization: Select a suitable vector W of variables to perform
the linearization of the Riemann problem, see (28).

• Solution of linear Riemann problem: Evaluate the Godunov state according to any of
(31)–(33).

• Numerical �ux: Evaluate the numerical �uxes and functions according to (34).
In the next section we apply the EVILIN Riemann solver to the Euler equations.

4. EXAMPLE: THE EULER EQUATIONS FOR GENERAL MATERIALS

The EVILIN method of this paper is most easily applied to any hyperbolic system for which
the eigenstructure is known, analytically or numerically. In this section we demonstrate the
performance of the schemes for a conservative system, namely the Euler equations for com-
pressible materials.

4.1. Governing equations

The Euler equations in three space dimensions are

@tQ+ @xF(Q) + @yG(Q) + @zH(Q)= 0 (35)

with

Q=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�u

�v

�w

E

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; F(Q)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�u

�u2 + p

�uv

�uw

u(E + p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; G(Q)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�v

�vu

�v2 + p

�vw

v(E + p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; H(Q)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�w

�wu

�wv

�w2 + p

w(E + p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(36)

Here � is density; u, v and w are velocity components in the x, y and z directions, respectively;
p is pressure and E is total energy given by

E=�[ 12 (u
2 + v2 + w2) + e] (37)

with e being the speci�c internal energy.
To have a determined system one requires a closure condition. For general compressible

materials one uses a caloric equation of state relating the variables �, p and e. Often one
uses other variables, such as the speci�c volume 1=� and the entropy s. Here we consider
two possible functional relations for a general equilibrium equation of state in terms of the
variables �, p and e. These are given below, along with the corresponding expressions for
the sound speed in the considered material

p=p(�; e)→ a=
√
p
�2
pe + p�; e= e(�;p)→ a=

√
p
�2ep

− e�
ep

(38)
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where subscripts denote partial derivatives. We assume the standard convexity condition for
the equation of state. For the simple case of ideal gases one has the familiar equation of state
and corresponding sound speed

e=
p

(�− 1)� → a=
√
�p
�

(39)

where � is the ratio of speci�c heats. For air under most conditions one takes �=1:4.
General background on thermodynamics and equations of state can be found, for example,
in Reference [12] and references therein.

4.2. The PVRS Riemann solver with evolved data

In the frame of �nite volume schemes one requires a numerical �ux in the direction nor-
mal to each volume face, at each integration point. Thus, without loss of generality, to �nd
the intercell �ux we may consider the split augmented one-dimensional problem in the x
direction. Here we generalize the so-called PVRS Riemann solver, �rst proposed in Refer-
ence [13], and apply it with initial data that have been evolved, as suggested in Section
3.1. We choose the physical or primitive variable vector W=[�; u; v; w; p]T to work with.
Then

@tW+ B(W)@xW= 0 (40)

with

W=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

u

v

w

p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; B(W)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u � 0 0 0

0 u 0 0
1
�

0 0 u 0 0

0 0 0 u 0

0 �a2 0 0 u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

The real eigenvalues are

�1 = u− a; �2 = �3 = �4 = u; �5 = u+ a (42)

with corresponding right eigenvectors

R(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−�=a
1

0

0

−�a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; R(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; R(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; R(4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; R(5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�=a

1

0

0

�a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(43)
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Figure 2. Structure of the solution of the split three-dimensional Riemann problem normal to a cell
interface for the Euler equations for compressible materials with a general convex equation of state.

We solve the Riemann problem

@tW+ B(W)@xW= 0

W(x; 0) =

⎧⎨
⎩
ŴL ≡MQ̂L if x¡0

ŴR ≡MQ̂R if x¿0

(44)

where Q̂L and Q̂R are evolved initial conditions using the non-linear step (21) or (22).
The structure of the solution of the normal Riemann problem is depicted in Figure 2. The

multiple eigenvalue �= u is associated with a contact discontinuity, a shear wave in the y
direction and a shear wave in the z direction. There are four constant regions. The region of
unknowns is called the Star Region, which is divided by the contact wave into a Star Left
and a Star Right regions.
The linear algebraic system (30) has solution

�̂1 =
1
2
�p−�u�̃ã

�̃ã2

�̂2 =
��ã2 −�p

ã2

�̂3 =�v

�̂4 =�w

�̂5 =
1
2
�p+�u�̃ã

�̃ã2

(45)
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where �q= q̂R − q̂L, for any component q of the vector of unknowns W. The lineariza-
tion requires mean values q̃ for the components q, for which we take the simple arithmetic
means q̃=1=2(q̂L + q̂R). The explicit solution in the unknown Star Region, see Figure 2, is
given by

p∗ = 1
2(p̂L + p̂R)− 1

2 (ûR − ûL)C1
u∗ = 1

2(ûL + ûR)− 1
2 (p̂R − p̂L)=C1

�∗
L = �̂L + (ûL − u∗)C2

�∗
R = �̂R + (u

∗ − ûR)C2
v∗L = v̂L

v∗R = v̂R

w∗
L = ŵL

w∗
R = ŵR

(46)

where

C1 = �̃ã; C2 = �̃=ã (47)

To completely determine the solution we also need to specify estimates for the partial deriva-
tives e� and ep in the general equation of state (38) in order to evaluate ã . We suggest

ẽ�= 1
2[(e�)L + (e�)R]; ẽp= 1

2[(ep)L + (ep)R] (48)

where (e�)L, (e�)R, (ep)L, (ep)R are evaluated on the evolved states ŴL, ŴR, respectively.
For the ideal gas case ã=

√
�p̃=�̃, as expected.

Remarks
Solution (46) is valid for any equation of state of form (38), which enters the solution via
the data-evolution step and via the speed of sound in the constants C1 and C2 in (47). The
approximate solution (46) of the Riemann problem is complete, in the sense that accounts for
all waves present in the structure of the exact solution of the non-linear Riemann problem.
This has a bearing on the resolution capability of the associated Godunov scheme, particularly
for the linearly degenerate �elds. We note also that the given solution for density and shear
waves, the linearly degenerate �elds, has the same structure as the exact solution, the only
approximation being that for the normal particle speed u∗. Note that the solution for these
waves is exact if the initial data are connected by a corresponding isolated wave, provided
the tangential velocity components have not undergone a predictor step. In practice, it seems
as if the resolution of shear waves is not a�ected by applying the predictor step also to the
tangential velocity components. However, this may be the subject of some further study.

4.3. Sample numerical results

We illustrate the performance of the EVILIN Riemann solver proposed in this paper as applied
to the time-dependent Euler equations in one space dimension and in two space dimensions
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Figure 3. Test 1: Stationary contact. EVILIN and HLL results (�rst-order) for density are compared
with the exact solution (full line) at time t=2:0ms with M =100 cells.

on non-Cartesian geometries. We use the ideal gas equation of state with constant gamma,
�=1:4. We compare results with exact solutions and with reference solutions. We consider
�ve test problems, for all of which we use a CFL coe�cient Cc� = 0:9 for the computations.

4.3.1. Test 1: stationary contact. We solve the equations in a domain [0; 1]. The initial
condition consists of constant pressure p=1, constant velocity u=1 and a discontinuous
distribution of density: �=1:4 in [0; 1=2] and �=1:0 in (1=2; 1]. We apply transmissive
boundary condition at both ends. The purpose is to assess the performance of EVILIN for
resolving delicate features, such as contact discontinuities, for which most numerical meth-
ods have large numerical dissipation, being the largest for the case in which the wave is
stationary.
In Figure 3 we compare numerical results with the exact solution. As is illustrated by the

HLL [14] result (triangles), non-complete Riemann solvers have large numerical dissipation
for linearly degenerated �elds. The proposed EVILIN Riemann solver reproduces the exact
solution (circles).

4.3.2. Test 2: shock-tube problem with sonic �ow. Here we assess EVILIN for a shock-
tube problem with sonic �ow. We solve the problem in the domain [0; 1], subdivided into a
left section [0; 0:3] and a right section (0:3; 1]. The initial conditions assign data for density,
velocity and pressure �L =1:0, uL =3=4, pL =1:0 in the left section and �R =1=8, uR =0:0,
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Figure 4. Test 2: Shock tube with sonic �ow. EVILIN result (�rst-order) for density is compared with
the exact solution (full line) at time t=0:30ms with M =100 cells.

pR =0:1 in the right section. The solution includes a right shock, a right contact discontinuity
and a left transonic, or sonic rarefaction wave. We remark that this is not the original Sod
test problem but a modi�cation of it so as to produce a transonic rarefaction as part of the
solution. The sonic point is known to cause di�culties to numerical methods. Conventional
linearized Riemann solvers give a large jump in all �ow variables, a rarefaction shock, unless
explicit entropy �xes are enforced.
Figure 4 shows numerical results for density as compared with the exact solution. The

numerical results from the Godunov method with the exact Riemann solver and those from
EVILIN are virtually indistinguishable, particularly for the shock and for the sonic point.
It is well known that the exact Riemann solver, although theoretically entropy satisfying,
produces a visible entropy glitch at the sonic point. The EVILIN solver also produces this
small glitch but the method has no ad hoc entropy �xes, which are essential for all classical
linearized Riemann solvers available. We observe that the size of this small entropy jump
is seen to tend to zero as the mesh is re�ned, for both EVILIN and for the exact Riemann
solver.

4.3.3. Test 3: low-density �ow. Here we assess EVILIN for a shock-tube problem with low-
density �ow. We solve a Riemann problem in the domain [0; 1], subdivided into a left section
[0; 1=2] and a right section (1=2; 1]. The initial conditions consists of constant density �=1,
constant pressure p=0:4 and a discontinuous distribution of velocity uL = − 2 in [0; 1=2]
and uR =2 in (1=2; 1:0]. The solution consists of two strong symmetric rarefaction waves with
stationary �ow in the middle. This is a di�cult test for many numerical methods. In particular,
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Figure 5. Test 3: Low-density �ow. EVILIN result (�rst-order) for density is compared with the exact
solution (full line) at time t=0:15ms with M =100 cells.
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Figure 6. Test 3: Low-density �ow. EVILIN result (�rst-order) for velocity is compared with the exact
solution (full line) at time t=0:15ms with M =100 cells.
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Figure 7. Test 4: Blast wave problem. Results (�rst-order) from EVILIN and the Godunov scheme
with the exact Riemann solver (full line) at time t=0:027ms with M =3000 cells.
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Figure 8. Test 4: Blast wave problem. Results (�rst-order) from EVILIN and the Godunov scheme
with the exact Riemann solver (full line) at time t=0:038ms with M =3000 cells.
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Shock wave

0 0.2 1.0

0

1

Figure 9. Test 5: Mach re�ection problem. Left-hand side sketch shows computational domain and
position of initial shock wave. Right-hand side picture shows the experimental result for the lower half

of the domain (Courtesy Prof. K Takayama, Japan).

it is known that conventional linearized Riemann solvers [15] produce negative pressures and
negative densities, leading the codes to crush.
Figures 5 and 6 compare numerical results against the exact solution, for density and

velocity, respectively. We remark that the region of stationary �ow, see Figure 6, is di�cult
to resolve, even for well-established complete Riemann solvers, such as HLLC [16]. EVILIN
gives an accurate solution there, particularly for the stationary region.

4.3.4. Test 4: blast wave interaction. We solve the equations in a domain [0; 1]. The ini-
tial condition consists of constant density �=1, constant velocity u=0 and a discontinu-
ous distribution of pressure: pL =1000 in [0; 1=10], pM =0:01 in (1=10; 9=10] and pR =100
in (9=10; 1]. For a detailed discussion on the solution of this problem see Reference [17].
The purpose of this test is to assess the robustness and accuracy of the present Riemann
solver for resolving very strong shock waves and multiple wave–wave and wave–boundary
interactions.
Figures 7 and 8 compare numerical results for density from EVILIN with those from the

Godunov scheme with the exact Riemann solver for two output times. Figure 7 shows the
case just before the collision of two very strong shock waves emerging from the discontinuous
initial conditions. The results from EVILIN and the exact Riemann solver are indistinguishable.
Figure 8 shows the solution after multiple wave interaction. The result from EVILIN agrees
well with that from the exact Riemann solver.

4.3.5. Test 5: Mach re�ection in two space dimensions. This test consists of a shock re�ec-
tion problem in a two-dimensional non-Cartesian domain as depicted by the left-hand side
sketch of Figure 9. This is a double-wedge situation in which a plane shock wave travels from
left to right, re�ects from the wedges placed at an angle of 25◦ to the initial shock direction,
producing a symmetric Mach re�ection pattern. The right-hand side picture of Figure 9 shows
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Pressure u-velocity

v-velocity Density

Figure 10. Test 5: Mach re�ection problem. Numerical results (second-order) at time
t=1:0ms for a mesh of 1000× 1000 cells.

the experimental result for a single wedge, that is, the lower half of the domain shown on the
left-hand side. Clearly seen in the experiment are the incident shock, the re�ected shock, the
Mach stem and the slip surface, all meeting at the triple point. The experiment corresponds
to an initial shock wave of shock Mach number 1.7. Numerical results from a second-order
TVD extension of EVILIN are given in Figures 10 and 11, in which contours are shown for
80 equally spaced levels.
Figure 10 shows computed results at the output time t=1:0ms using a mesh of M =1000×

1000 cells. The qualitative agreement between the numerical solution and the experimental
result of Figure 9 (right-hand side) is very satisfactory. All features seen in the experiment are
reproduced in the numerical solution. The numerical results have also preserved the expected
symmetry of the problem. Note also that our results do not escape the typical, so-called,
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Pressure u-velocity

v-velocity Density

Figure 11. Test 5: Mach re�ection problem. Numerical results (second-order) at time
t=1:1ms for a mesh of 1000× 1000 cells.

start-up error, which is clearly seen in the density plot. There are standard ways of eliminating
this error.
The numerical resolution of all discontinuities is very satisfactory; discontinuities are sharp

and free from spurious oscillations. For modern numerical methods the resolution of shocks
is usually straightforward, but not so the resolution of linearly degenerate �elds, for which
one of the problems to be encountered is excessive numerical di�usion. Our results also show
a sharp and oscillation-free resolution of the slip surface emanating from the triple point.
Finally, Figure 11 shows the numerical solution at time t=1:1ms. Note that the two re-

�ected shock waves have interacted producing two new, stronger re�ected shocks waves.
This computation is included to demonstrate the ability of the scheme to handle strong wave
interaction in multiple space dimensions.
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5. SUMMARY

We have formulated upwind and symmetric schemes for non-linear hyperbolic systems con-
taining non-conservative di�erential terms. The upwind schemes require the solution of the
Riemann problem, for which we have proposed a new scheme in which one �rst evolves in
time the initial conditions, non-linearly, and then performs a simple linearization of the Rie-
mann problem, for which a straightforward solution can be obtained. The complete scheme
is non-linear. The EVILIN method presented in this paper e�ectively extends the family of
complete non-linear Riemann solvers to all hyperbolic systems for which the eigenstructure
is known analytically or numerically.
For the conservative case we have illustrated the resulting upwind schemes for the three-

dimensional Euler equations with general equation of state, have given the explicit solution
of the Riemann problem and have shown numerical results for ideal gases for one- and
two-dimensional problems, for �rst- and second-order non-linear schemes in non-Cartesian
geometries.
Work in progress includes the application of the EVILIN Riemann solver in the framework

of very high order �nite volume ADER schemes to solve the equations of non-linear elasticity
and the equations for compressible multi-phase �ows. Preliminary results are very encouraging.
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